DESIGNING SIMULATION FRAMEWORK FOR MULTI-HOP ROUTING IN WIRELESS SENSOR NETWORKS

Dr. L. LAKSHMANAN

Professor Department of Computer Science and Engineering School of Computing Sathyabama Institute of Science and Technology Deemed to be University Chennai – 119 Tamil Nadu, India

The Research Monograph Series in *Computing, Electrical & Communication Networks*

Designing Simulation Framework for Multi-Hop Routing in Wireless Sensor Networks

Author: L. Lakshmanan

Published by Bohr Publishers, Chennai, India

Old Door No. 4, New Door No. 3, Rishilaya Building, 2nd Street, Golden Avenue, Devi Karumariamman Nagar, Velachery, Chennai – 600 042, India

©2022 Bohr Publishers

All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording or storage in any information or retrieval system, without the prior permission of the copyright owner.

ISBN: 978-93-92892-11-0 (Print) 978-93-92892-21-9 (Online)

Typeset and Cover designed by Chennai Publishing Services Pvt. Ltd., Chennai, India Printed by Ridha Prints Pvt. Ltd., Madurai, India

ABSTRACT

WSN is an advanced key area of research which helps in identifying many unmanned applications in forest based hazardous areas such military applications and it has wide range of focus in medical applications too. In real world scenario, the expectation levels of sensor nodes have become a high impact in terms of size, cost, efficiency and reliability. In such a case all the sensor nodes are deployed and current resource utilization leads the sensor nodes to sacrifice its performance level this may happened often in sensor medium. In sensor nodes the structural elements are fully based on cost, resource, battery backup, packet transmission etc. The sensor device generally has three main systems namely

- 1) An advent subsystem which sense the environment
- 2) Computational logic which converts the sensed raw into computational data.
- 3) Message exchange protocol.

The major part of research focus on "message exchange protocol" in context of finding optimal/best path within the communication of sensor nodes to the base station.

The most key problems in wireless sensor networks are finding optimal routing algorithms for sending packets from source node (sensor nodes) to destination node (base station/sensor nodes). Basic universal property of WSN focuses on low power consumption during packet transmission and receiving. Several algorithms exists in literature, since some are of in vital role other may not. Here we adopt by merging swarm based algorithm with genetic approach. Initially the nodes are ordered, based on their energy criterion, and then focusing towards node path; this can be done using Proactive route algorithm for finding optimal path between S-D (Source–Destination) nodes. Fast processing and pre traversal can be done using selective flooding approach and results are genetic in nature.

The wireless sensor node should function for a long interval by utilizing the available energy resources and should full fill reliability by means of data transmission, even if any one of the nodes fails. A new hybrid approach in routing protocol by combining PSO routing

iv Designing Simulation Framework for Multi-Hop Routing in Wireless Sensors

protocol with clustering algorithm is implemented and checked. Here the approach focuses fully on ACO and BCO on PSO routing protocol and K-Means clustering algorithm for illustrating the clusters of node or grouping the nodes. The proposed approach is tested for its proficiency, performance, energy consumption level and reliability.

In heterogeneous sensor nodes are basically standalone in nature. For that network, creating the communication path is quite a big deal, Here we deeply investigate a routing model for heterogeneous nodes in Wireless sensor networks using Voronoi cell. We estimate the actual traffic among the sensor node, which is defined clearly as the traffic packets, controlled at each server. Network load is monitored using the traffic inbound rules and the estimation is defined in the circular pattern in the form of Voronoi cell. Each functional patterns of the traffic are classified as source and destination in asymptotic rule. Each sensor nodes traffic are redirected to the centralized server acting in the real world, where the sensor data are patched periodically and the data packets travelling from the node to node are updated. Each traffic patterns and sensor nodes are classified and the nodes communication regions are known to the base station by drawing the pattern in Voronoi. The experimental results show the actual working model and our routing model yields 78% accuracy.

A new framework model with less computational utilities, aiming to reduce the software complexity in terms of routing without sacrificing the performance of the network was proposed and implemented. The sensor nodes are connected with base station, in our model the neighbouring node information is considered and maintained, which helps in packet forwarding in frequent intervals when the nodes are in wireless mode. Here, in our model the node holds the neighbour information and relay the next hop information in straight line, hence it is rechecked to next - hop relay. If the next hop is closest to the neighbour node or relay is hold on the neighbour node, then the hop will be considered as the node entity and routing packets are greedy in nature and forwarded to the next hop. CTS and RTS messages are sent to the neighbour node to discover the node and its identity. Our experimental results are denoted in terms of simulation and the simulation topology shows that our framework outperforms the existing protocol in wireless sensor network with 92% accuracy.

Hence to deploy an optimal data packet routing in wireless sensor network was an impact of researchers. here we proposed a new scheme called circular routing called CBR, here the routing scheme is one of the vast advent where the data packets inter arrival was calculated periodically for every hops. For every instance the boundary or contour

Abstract

of the network is evaluated which in turn gives an optimality in terms of finding the shortest contour within the circular boundary of network. Experimental results demonstrate the actual working procedure of the routing scheme in WSN. The proposed method was much better in terms of optimal resource utilization and routing based on the hop to hop in multi hop networks.

The hypothesis states that the entire routing algorithm implemented here is to find the optimal path between sensor nodes (S-D) in terms of optimality in routing perspective. To gain the increased level of success rate in routing data packets, we have implemented various algorithms for WSN. Five various routing protocol has been proposed and out of all Voronoi cell – circular pattern based routing outperforms with higher accuracy rate in both the heterogeneous and homogenous WSN. The experimental results show the working routing model yields 78% accuracy in both heterogeneous and homogenous WSN.

TABLE OF CONTENTS

LIST	OF	FABLE	S	xi
LIST	OF I	FIGUR	ES	xiii
LIST	OF S	SYMBO	OLS AND ABBREVATIONS	xv
1.	INT	RODU	CTION	1
	1.1	WIRE	LESS SENSOR NETWORKS	1
	1.2	ROUT	ING	7
	1.3	OBJE	CTIVE	9
	1.4	SCOP	E OF THE THESIS	12
	1.5	CONC	CLUSION	14
2.	STAT	FE OF	THE ART	15
	2.1	SENSO	OR ARCHITECTURAL DESIGN	15
	2.2	DATA	-CENTRIC PROTOCOLS	20
		2.2.1	Spin	20
		2.2.2	Flooding	23
		2.2.3	Directed Diffusion	23
		2.2.4	Energy-Aware Routing	25
		2.2.5	Rumor Routing	26
		2.2.6	Gradient-Based Routing	27
		2.2.7	Constrained Anisotropic Diffusion Routing (CADR)	27
		2.2.8	Information-driven Sensor Querying (IDSQ)	27
		2.2.9	Cougar Routing	27
		2.2.10	ACtiveQUery Forwarding in Sensor networks	
			(ACQUIRE)	28
	2.3	HIER	ARCHICAL PROTOCOLS	28
		2.3.1	Low-Energy Adaptive Clustering Hierarchy	
			(LEACH)	28
		2.3.2	Power Efficient Gathering in Sensor Information	
			Systems (PEGASIS)	29
		2.3.3	Hierarchical Power-Efficient Gathering in Sensor	
			Information Systems (Hierarchical PEGASIS)	29

	2.3.4	Threshold Sensitive Energy Efficient Sensor Network	τ
		Protocol (TEEN)	29
	2.3.5	Adaptive Threshold Sensitive Energy Efficient	
		Sensor Network Protocol (APTEEN)	30
	2.3.6	Energy-Aware Routing for Cluster-Based Sensor	
		Networks	30
2.4	SELF-	ORGANIZING PROTOCOL	31
2.5	LOCA	ATION-BASED PROTOCOLS	32
	2.5.1	Minimum Energy Communication Network	
		(MECN)	32
	2.5.2	Small Minimum Energy Communication Network	
		(SMECN)	34
	2.5.3	Geographic Adaptive Fidelity (GAF)	34
	2.5.4	Geographic and Energy Aware Routing (GEAR)	35
2.6	NETV	WORK FLOW PROTOCOLS	36
	2.6.1	Maximum Lifetime Energy Routing	36
	2.6.2	Maximum Lifetime Data Gathering	37
	2.6.3	Maximum Lifetime Data Aggregation (MLDA)	37
	2.6.4	Minimum Cost Forwarding	37
2.7	QoS-1	AWARE PROTOCOL	38
	2.7.1	Sequential Assignment Routing (SAR)	38
	2.7.2	Energy-Aware QoS Routing Protocol	38
	2.7.3	Speed	39
HYI	BRID S	CHEMES	41
3.1	INTR	ODUCTION	41
3.2	HYBI	RID SCHEME 1 – OPTIMIZING LOCALIZATION	
	ROU	TE USING PARTICLE SWARM-A GENETIC	
	APPR	OACH	43
	3.2.1	Particle Swarm Optimization (PSO)	43
	3.2.2	Genetical Swarm Optimization	44
	3.2.3	Flooding in GA	44
	3.2.4	Pseudocode for the PSO-GA	45
	3.2.5	Implementation Results	45
3.3	HYBI	RID SCHEME 2 – SWARM-CLUSTER BASED	
	ROU	TING SCHEME FOR HETEROGENEOUS NODES	45
	3.3.1	Node Identity	45
	3.3.2	Clustering	47
	3.3.3	Modified k-Means for Clustering WSN	47
	3.3.4	ACO with k-Means	48
	3.3.5	BCO with k-Means	48
	3.3.6	Combination of Hybrid Model	49

3.

		Table of Contents	ix
		3.3.7 Implementation Results	50
	3.4	PERFORMANCE ANALYSIS	56
		3.4.1 Hybrid Scheme 1	56
		3.4.2 Hybrid Scheme 2	58
	3.5	CONCLUSION	59
4.	AN	ALYSIS OF SHORTEST ROUTE FORHETEROGENEOUS	
	NO	DE IN WIRELESS SENSOR NETWORK	60
	4.1	INTRODUCTION	60
	4.2	PROPOSED METHODOLOGY	60
		4.2.1 Node Identity	60
		4.2.2 Bounding Region for Traffic Analyzing	61
	4.3	ALGORITHM–VORONOI CELL AND K-MEANS	
		CLUSTERING	61
	4.4	ASYMPTOTIC RULE CLASSIFICATION FOR	
		DEFINING SOURCE AND DESTINATION	61
	4.5	PATCH SERVERS	62
	4.6	DATA ROUTING	62
		4.6.1 Data Routing using ANTS	62
	4.7	EXPERIMENTAL SETUP	63
	4.8	CONCLUSION	63
5.	DES	SIGNING SIMULATION FRAMEWORK FOR MULTI	
	HO	P KOUTING IN WIKELESS SENSOK NET WORK	~-
	051	NG PSO ALGORITHM	65
	5.1		65
	5.2		65
	5.3	PROPOSED METHODOLOGY	66
	5.4	NODE DISCOVERI MULTI HOD DOLITING LIGING DEO	66
	5.5	MULTI-HOP KOUTING USING PSO	66
	5.6	THE ALGORITHM FOR THE STRAIGHT	60
		LINE KOUTING IMDI EMENTATION DECLUTE	68
	5./	IMPLEMENTATION RESULTS	68 74
	5.8 5.0	PERFORMANCE ANALISIS	74
	5.9	CONCLUSION	/5
6.	CBI	R-CONTOUR BASED ROUTING IN MULTI HOP	-
	WI	KELESS SENSUK NEI WUKK	/6
	6.1		/6
	6.2	PKEVIOUS AI IEMPI	/6
	6.3	PROPOSED METHODOLOGY	77
	6.4	CUNTUUK BASED DATA ΕΧCΗΑΝGE	/8

x	Designing Simulatio	n Framework for	Multi-Hop 1	Routing in	Wireless Sensors
---	---------------------	-----------------	-------------	------------	------------------

	6.5	MULTIPLE BASE	78
	6.6	SIMULATION RESULT AND PERFORMANCE	
		ANALYSIS	78
	6.7	A COMPARISON	80
	6.8	CONCLUSION	81
7.	CO	NCLUSION	82
	7.1	INTRODUCTION	82
	7.2	CONTRIBUTION OF THE WORK DONE	83
	7.3	FUTURE RESEARCH	84
REFERENCES			85

LIST OF TABLES

2.1	List of Routing protocols in WSN	21
3.1	The experimental result for Genetic, PSO, and Genetic-PSO	56
3.2	Computational complexity of PSO Algorithm	58

LIST OF FIGURES

1.1	Typical Architecture of Sensor Network	5
1.2	Future scope of the Wireless sensor Network	14
2.1	SPIN Protocol	22
2.2	Flooding along with impulsion and Overlapping problem	24
2.3	Directed Diffusion routing mechanism	24
2.4	Directed Diffusion data delivery mechanism	25
2.5	Routing Mechanism in TEEN and APTEEN	31
2.6	Relay region in MECN and SMECN	33
2.7	GAF mechanism of various states	35
2.8	GEAR Routing Mechanism	36
2.9	Energy-Aware QoS Routing Protocol -Queuing model in	
	sensor node	39
2.10	Routing in SPEED – SNFG module	40
3.1	Connection Matrix for estimation of error for PSO-GA	
	algorithms	46
3.2	Particle rate and particle position of Each nodes in WSN	46
3.3	Average analysis of FFit function	46
3.4	Implementation Evaluation PSO-GA Algorithm	47
3.5	Sensor nodes with Server Conclusion	50
3.6	Sensor Node SYN flooding mechanism	50
3.7	CTS message from sensor nodes	51
3.8	Optimal Path Establishment with Conformation CTS message	51
3.9	Crossover occurrence due to flooding of Multiple RTS	52
3.10	Node Discovery with Path Optimization	52
3.11	Path Establishment Between the nodes	53
3.12	Node discovery for second level gateways	53
3.13	Decentralized node prediction	54
3.14	SYN flooding to discover the localized node (Destination node)	54
3.15	Repeated CTS message from the sensor nodes	55
3.16	Optimal path by node discovery	55
3.17	Results of PSO-GA algorithm	58
3.18	The packet transmission within the cluster with repeated	
	sequence of CTS	59
4.1	Threshold based traffic analyzing	61
4.2	Simulation Model of the Proposed Routing Protocol	64

5.1	Working Model of Ant Colony Optimization	67
5.2	Ant Colony Straight Line Routing	67
5.3	Path Discovery by Ant	68
5.4	Range of nodes in active heterogeneous Networks	68
5.5	Node Activity monitor in generating next hops	69
5.6	Point parameters for generating the straight line	69
5.7	Evaluation of the points and ACO routing	69
5.8	Parameters Straight Line Routing with consistency using	
	PCO and active routing within the nodes	70
5.9	Next hop Relay in Straight Line Routing	74
6.1-a	Rate of data transmission	79
6.1-b	Contour level and node identity	79
6.2	Implementation of Contour Routing Scheme	79
6.3	Simulation Model of Contour Based Routing	80
6.4	Comparisons of the Proposed Routing Schemes	81

LIST OF SYMBOLS AND ABBREVIATIONS

SYMBOLS

- η1 Self-confidence factor
- $\eta 2$ Swarm-confidence factor
- P_{id} Personal best position
- P_{id}n Global best position
- $\mathbf{r}_1, \mathbf{r}_2$ Independent random
- V_{id} Velocity of the particle
- X_{id}^{ha} Position of the particle
- n Total number of particle
- ~ V Function Threshold
- HC Hybridization Coefficient

ABBREVIATIONS

-	Acknowledgement
-	Ant Colony Optimization Algorithm
-	Adaptive Threshold Sensitive Energy Efficient
-	Address Resolution Protocol
-	Bee Colony Optimization
-	MAC Protocol For Wireless Sensor Networks
-	Contour Based Routing
-	Clear Channel Assessment
-	Code Division Multiple Access
-	Central Processing Unit
-	Clear To Send
-	Genetic Algorithm
-	Geographic Adaptive Fidelity
-	Geographic and Energy Aware Routing
-	Global Information System
-	Global Positioning system
-	General Packet Radio Service
-	Genetical Swarm Optimization
-	Information-Driven Sensor Querying

LEACH	-	Low-Energy Adaptive Clustering Hierarchy
LML	-	Local Markov Loops
MAC	-	Medium Access Control
MANET	-	Mobile Ad-Hoc Network
MECN	-	Minimum Energy Communication Network
MLDA	-	Maximum Lifetime Data Aggregation
MLDR	-	Maximum Lifetime Data Routing
MMSN	-	Multi-Frequency. Media Access Control
		For Wireless Sensor Networks
MR	-	Multi-Resolution Searching
PEGSIS	-	Power-Efficient Gathering in Sensor
		Information Systems
PMAC	-	PseudoMAC
PSO	-	Particle Swarm optimization
QoS	-	Quality of Service
RAM	-	Random Access Memory
ROM	-	Read Only Memory
RTS	-	Request To Send
SAR	-	Sequential Assignment Routing
SI	-	Swarm Intelligence
SMECN	-	Small Minimum Energy Communication Network
SNGF	-	Stateless Geographic Non-Deterministic forwarding
SNP	-	Sensor Network Protocol
SNR	-	Signal Noise Ratio
SPIN	-	Sensor Protocols for Information via Negotiation
SYN	-	Synchronization
TDMA	-	Time Division Multiple Access
TEEN	-	Threshold Sensitive Energy Efficient
WSN	-	Wireless Sensor Networks

xvi Designing Simulation Framework for Multi-Hop Routing in Wireless Sensors